

Event COT102 Cotton

Real-time, Event-specific Polymerase Chain Reaction Method

Syngenta Crop Protection, LLC 3054 East Cornwallis Road PO Box 12257 Research Triangle Park, NC 27709-2257, USA

TABLE OF CONTENTS

TABLE OF CO	NTENTS	2
LIST OF TABL	ES	3
LIST OF FIGUI	RES	3
LIST OF ACRO	DNYMS AND ABBREVIATIONS	4
1.0	INTRODUCTION	5
2.0	METHOD	5
2.1	Principle of the COT102 Real-time, Event-specific Method	5
2.2	Reagents and Equipment	6
2.3	DNA Concentration of Samples	7
2.4	Calibration Standards	7
2.5	The <i>sah7</i> -specific PCR Method	7
2.6	Event-specific PCR Method for the Detection and Quantification of COT102 DNA	9
2.7	Cycling Parameters	10
2.8	PCR Plate Layout	10
2.9	Data Analysis and Evaluation of Results	11
3.0	REFERENCES	12

LIST OF TABLES

TABLE 1	Equipment and Materials	6
TABLE 2	Reagents, Buffers, and Solutions	
TABLE 3	Dilution Scheme of the Calibration Standards	
TABLE 4	The <i>sah7</i> -specific PCR Primers and Probe Sequences	8
TABLE 5	Master Mix for the sah7-specific PCR Method	9
TABLE 6	COT102 Real-time, Event-specific PCR Primers and Probe	
	Sequences	9
TABLE 7	Master Mix for the COT102-specific PCR Method	
TABLE 8	Cycling Parameters	10

LIST OF FIGURES

FIGURE 1	Sequence of the 115-bp Amplicon Generated by PCR	
	Amplification with the sah7-specific PCR Method from the A-	
	subgenome of Cotton	8
FIGURE 2	Sequence of the 123-bp Amplicon Generated by PCR	
	Amplification with the <i>sah7</i> -specific PCR Method from the D-	
	subgenome of Cotton	8
FIGURE 3	Sequence of the 101-bp Amplicon Generated by PCR	
	Amplification with the COT102 Real-time, Event-specific PCR	
	Method	9
FIGURE 4	PCR Plate Layout	

LIST OF ACRONYMS AND ABBREVIATIONS

Definitions of International System of Units (SI) base units and derived units may be found in NIST (2011).

bp	base pair
СТ	cycle threshold
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
PCR	polymerase chain reaction
sah	sinapis arabidopsis homolog
TE	tris (2-amino-2(hydroxymethyl)-propane-1,3-diol)/EDTA (ethylenediaminetetraacetic acid)

1.0 INTRODUCTION

Using the techniques of modern molecular biology, Syngenta has transformed cotton (*Gossypium hirsutum* L.) to produce Event COT102 cotton, a new cultivar that has controls against several lepidopteran pests of cotton.

A real-time, event-specific polymerase chain reaction (PCR) method was developed to detect and quantify COT102 deoxyribonucleic acid (DNA) extracted from seed and other plant material samples. The method consists of a cotton-specific PCR method as a reference, and an event-specific PCR method for detection of COT102 cotton.

2.0 METHOD

2.1 Principle of the COT102 Real-time, Event-specific Method

The COT102 real-time, event-specific PCR method is optimized for use on an Applied Biosystems[®] 7500 Fast Real-Time PCR System using the standard mode. The amount of PCR product is determined during each cycle (real-time) by measuring the fluorescence produced by a target-specific oligonucleotide probe labeled with two fluorescent dyes.

- COT102-specific PCR method: oligonucleotide probe with 6-FAMTM as a reporter dye at its 5' end and TAMRATM as a quencher dye at its 3' end
- Cotton-specific PCR method: oligonucleotide probe with VIC[®] as a reporter dye at its 5' end and TAMRA[™] as a quencher dye at its 3' end

The 5'-nuclease activity of *Taq* DNA polymerase cleaves the probe and liberates the fluorescent moiety from proximity to the quenching moiety during the amplification process. The resulting increase in fluorescence during amplification is monitored and recorded.

A cotton-specific PCR method previously validated within the context of the validation of the event-specific quantitative method for Event 3006-210-23/281-23-235 cotton (http://gmo-crl.jrc.ec.europa.eu/summaries/281-24-36_cotton_Protocol.pdf, http://gmo-crl.jrc.ec.europa.eu/summaries/3006-210-23_cotton_Protocol.pdf) is used as a reference method.

For specific detection of COT102 genomic DNA, a 101-base pair (bp) fragment of the region that spans the 3' insert-to-plant genome junction in COT102 cotton is amplified using two specific primers. The forward primer binding site is located in the COT102 insert, the reverse primer binding site is located in the cotton genomic sequence, and the probe binding site spans the junction between the COT102 insert and the adjacent cotton genomic DNA.

2.2 Reagents and Equipment

All materials (e.g., vials, containers, pipette tips) should be suitable for PCR and molecular biology applications (Table 1). Materials should be deoxyribonuclease (DNase)-free, DNA-free, sterile, and unable to absorb protein or DNA. Table 2 contains a list of reagents, buffers, and solutions needed to perform the PCR method.

Equipment and materials	Specification
Applied Biosystems [®] 7500 Fast Real-Time PCR System	Applied Biosystems [®] part number 4351107 or equivalent
Vortex	NeoLab VM-300 or equivalent
Thermo-Fast [®] 96-well PCR plate	Abgene [®] catalog number AB-1400 or equivalent
Clear seal diamond heat sealing film	Abgene [®] catalog number AB-0812 or equivalent
Thermo-sealer	Abgene [®] catalog number AB-0384/240 or equivalent
Pipettes with adjustable volume	Eppendorf Research [®] , $2 - 20 \mu l$, $20 - 200 \mu l$, $100 - 1000 \mu l$ or equivalent
Filter tips	Fitting the pipette models used
Microcentrifuge tubes 1.5 ml	Roth catalog number 4182.1 or equivalent
Microcentrifuge tubes 1.5 ml, screw lids	Sarstedt part number 72.692.005 or equivalent

TABLE 1Equipment and Materials

TABLE 2Reagents, Buffers, and Solutions

Reagents, buffers, and solutions	Specification
TaqMan [®] Universal PCR Master Mix	Applied Biosystems [®] catalog number 4326708
1X TE buffer pH 8.0	Applichem part number A2575, 1000
Water (HPLC Gradient Grade)	Rotisolv [®] product number A511.1 or equivalent
Salmon sperm DNA	Sigma-Aldrich [®] catalog number D7656 or equivalent

TE = tris (2-amino-2(hydroxymethyl)-1,3-propanediol)/EDTA (ethylenediaminetetraacetic acid). HPLC = high performance liquid chromatography.

The handling of all reagents and controls should be carried out under sterile conditions and in a manner that precludes contamination of reagents or controls with exogenous DNA or undesired enzymatic activities (e.g., DNase).

The dilution buffer is 0.1X TE containing salmon sperm DNA. Resuspend 1 mg of salmon sperm DNA in 100 ml of 0.1 X TE (pH 8.0) to make a 10 ng DNA/ μ l 0.1X TE solution. Solution should be vortexed and stored at -20° C.

2.3 DNA Concentration of Samples

For the unknown samples, the use of 100 ng of template DNA per reaction is recommended. This corresponds to approximately 42918 haploid copies of the cotton genome, assuming a genome weight of 2.33 pg (Arumuganathan and Earle 1991).

2.4 Calibration Standards

The method format uses five calibration standards containing different amounts of COT102 genomic DNA (Standard 1 through Standard 5); each calibration standard is analyzed in both the COT102-specific and Sinapis Arabidopsis Homolog (*sah*) 7-specific PCR methods. The calibration standards are produced by preparing solutions of 20 ng/µl (100 ng/reaction) of total genomic DNA with 10%, 5%, 1%, 0.5%, and 0.07% copy/copy COT102 DNA mixed with nontransgenic cotton genomic DNA. Table 3 lists the total DNA content, as well as the total copy numbers of COT102, for each calibration standard. COT102 copy numbers are based on the fact that the COT102 seeds are homozygous.

Sample	Standard 1	Standard 2	Standard 3	Standard 4	Standard 5
Total DNA content	100 ng				
COT102 DNA copies	4292	2146	429	215	30

TABLE 3 Dilution Scheme of the Calibration Standards

2.5 The *sah7*-specific PCR Method

For relative quantification of COT102 DNA, two specific primers (Table 4) are used to amplify a fragment of the cotton endogenous gene *sah7*. This cotton-specific PCR method has been validated by the JRC (http://gmo-crl.jrc.ec.europa.eu/summaries/281-24-36_cotton_Protocol.pdf, http://gmo-crl.jrc.ec.europa.eu/summaries/3006-210-23_cotton_Protocol.pdf). Whereas primer and probe sequences and concentrations were taken from the original protocol, the buffer system was modified and validated. The gene *sah7* is present in both the A- and the D-subgenomes of *G. hirsutum*. The A-subgenome specific copy differs from the D-subgenome specific copy by several single or double nucleotide substitutions and small deletions or insertions. Primers and probe sequences of the cotton-specific reference PCR system match perfectly without any single mismatch to both subgenomes' gene copies. However, due to sequence deviations within the amplified region, the sizes of the amplicons resulting from the A- and D- subgenomes differ slightly, being 115 bp and 123 bp in length (Figures 1 and 2), respectively. The amount of PCR product is determined during each cycle in real-time by measuring fluorescence produced by a *sah7*-specific oligonucleotide probe (Table 4) labeled with $VIC^{\mathbb{R}}$ as a reporter dye at its 5' end and TAMRATM as a quencher at its 3' end.

 TABLE 4
 The sah7-specific PCR Primers and Probe Sequences

Primer/probe name	Primer sequence 5' to 3'
SAH7-uni-f1 primer	AGTTTGTAGGTTTTGATGTTACATTGAG
SAH7-uni-r1 primer	GCATCTTTGAACCGCCTACTG
SAH7-uni-s1 probe	VIC [®] -AAACATAAAATAATGGGAACAACCATGACATGT-TAMRA™

FIGURE 1Sequence of the 115-bp Amplicon Generated by PCR Amplification
with the *sah7*-specific PCR Method from the A-subgenome of
Cotton

SAH7-uni-fl primer SAH7-uni-s1 probe

<u>CAACCATGACATGT</u>TGGACTGGAT<u>CAGTAGGCGGTTCAAAGATGC</u> SAH7-uni-r1 primer

Primer and probe binding sites are underlined.

FIGURE 2Sequence of the 123-bp Amplicon Generated by PCR Amplification
with the *sah7*-specific PCR Method from the D-subgenome of
Cotton

SAH7-uni-fl primer SAH7-uni-s1 probe

 $\underline{CAACCATGACATGT} \texttt{TGGACTGGAGGTCAAAAT} \underline{CAGTAGGCGGTTCAAAGATGC}$

SAH7-uni-r1 primer

Primer and probe binding sites are underlined.

All reagents should be thawed, as necessary, and thoroughly mixed before each use. The master mix for the *sah7*-specific PCR method that contains all components of the PCR method except template DNA (Table 5) can be prepared in sufficient quantities before reactions are performed.

Components	Initial concentration	Final concentration	µl/reaction
TaqMan [®] Universal PCR Master Mix	2X	1X	12.50
SAH7-uni-f1 primer	10 µM	350 nM	0.875
SAH7-uni-r1 primer	10 µM	250 nM	0.625
SAH7-uni-p1 probe	10 µM	175 nM	0.438
Nuclease-free water	N/A	N/A	5.562
Total volume ^a	N/A	N/A	20.00

TABLE 5Master Mix for the sah7-specific PCR Method

^aTotal PCR reaction is 25 μ l (20 μ l master mix and 5 μ l genomic DNA template). N/A = not applicable.

2.6 Event-specific PCR Method for the Detection and Quantification of COT102 DNA

For specific detection of COT102 genomic DNA, two specific primers (Table 6) are used to amplify a 101-bp fragment of the region that spans the 3' insert-to-plant genome junction (Figure 3). The amount of PCR product is determined during each cycle in real-time by measuring the fluorescence produced by a COT102-specific oligonucleotide probe labeled with two fluorescent dyes: 6-FAMTM as a reporter dye at its 5' end and TAMRATM as a quencher dye at its 3' end (Table 6).

TABLE 6 COT102 Real-time, Event-specific PCR Primers and Probe Sequences

Primer/probe name	Primer sequence 5' to 3'
COT102_3_89F primer	TCTCCGCTCATGATCAGATTGTC
COT102_3_181R primer	CAGTAACAGTACAGTCGGTGTAGGG
COT102_3_115T probe	6-FAM [™] −TCCCGCCTTCAGTTTAAACTATCAGTGTTTAAT-TAMRA [™]

FIGURE 3 Sequence of the 101-bp Amplicon Generated by PCR Amplification with the COT102 Real-time, Event-specific PCR Method

COT102_3_89F primer COT102_3_115T probe TCTCCGCTCATGATCAGATTGTCGTT<u>TCCCGCCTTCAGTTTAAACTATCAGTGTTTAAT</u>AAATATGGGC

COT102_3_181R primer AATCTTT<u>CCCTACACCGACTGTACTGTTACTG</u>

Primer and probe binding sites are underlined.

All reagents should be thawed, as necessary, and thoroughly mixed before each use. The master mix for the COT102-specific PCR method that contains all components of the PCR method except template DNA (Table 7) can be prepared in sufficient quantities before reactions are performed.

Components	Initial concentration	Final concentration	µl/reaction
TaqMan [®] Universal PCR Master Mix	2X	1X	12.50
COT102_3_89F primer	10 µM	600 nM	1.50
COT102_3_181R primer	10 µM	600 nM	1.50
COT102_3_115T probe	10 µM	150 nM	0.375
Nuclease-free water	N/A	N/A	4.125
Total volume ^a	N/A	N/A	20.00

TABLE 7 Master Mix for the COT102-specific PCR Method

^aTotal PCR reaction is 25 μ l (20 μ l master mix and 5 μ l genomic DNA template). N/A = not applicable.

2.7 Cycling Parameters

An Applied Biosystems[®] 7500 Fast Real-Time PCR System using the standard mode in the instrument set-up is used with the COT102 real-time, event-specific PCR method and the *sah7*-specific PCR method. Table 8 shows the PCR cycling conditions.

TABLE 8	Cycling Parameters
---------	---------------------------

Cycle	Step	Temperature (°C)	Time (seconds)	Data acquisition	Number of cycles
А	1	50	120	No	1
В	1	95	600	No	1
С	1	95	15	No	15
	2	60	60	Yes	45

2.8 PCR Plate Layout

The calibration of the COT102 real-time, event-specific method includes five calibration standards, each containing different percentages of COT102 cotton genomic DNA, with a total amount of 100 ng cotton DNA. The COT102 DNA content of the standard samples ranges from 0.07% to 10% copy/copy. Each calibration standard is analyzed in duplicate with the COT102-specific PCR method, as well as with the *sah7*-specific PCR method. Duplicate negative control samples (1X TE buffer) containing no template DNA verify the purity of the reagents. Unknown samples are analyzed in triplicate for both the COT102-specific PCR methods. Figure 4 summarizes the PCR plate layout.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	Standard 1 Stand		lard 1	urd 1 Standard 2		Standard 2 Stand		dard 3 Standard 3				
В	Standard 4 Stand		lard 4	Standard 5		Standard 5		U	ative Negative ntrol control			
С	Unknown 1		Unknown 1		Unknown 2		Unknown 2					
D	Unknown 3		Unknown 3		Unknown 4		Unknown 4					
Е	Unknown 5		Unknown 5		Unknown 6		Unknown 6					
F	Unknown 7		Unknown 7		Unknown 8		Unknown 8					
G	Unknown 9		Unknown 9		Unknown 10		Unknown 10					
Н	Unknown 11		Unknown 11		Unknown 12		Unknown 12					

FIGURE 4 PCR Plate Layout

Standard 1 to 5: calibration standards.

Unknown 1 to 12: unknown samples.

Negative control: samples containing no template DNA (1X TE buffer).

White: *sah7*-specific PCR method.

Gray: COT102-specific PCR method.

2.9 Data Analysis and Evaluation of Results

Analyze the results according to the following procedure:

- a) Place the threshold in the region of exponential amplification across all of the amplification plots. This region is recognized in the logarithmic view of the amplification plots as the portion of the plot that is linear. Do not place the threshold line in the plateau phase or in the initial linear phase of amplification. Place the threshold line clearly above the background fluorescence and above the level where splitting or fork effects between replicates can be observed.
- b) Determine the cycle number at which the threshold line crosses the first amplification curve and set the baseline three cycles before that value (e.g., if the earliest cycle threshold [CT] = 24, set the baseline crossing at 21, or CT of 24 3).
- c) Save the settings.
- d) Repeat the procedure described in a) and b) on the amplification plots of the other method.
- e) Save the settings and export all the data into a Microsoft[®] Office Excel[®] file for further calculations.

A calibration curve can be produced by plotting mean delta CT (Δ CT) values of calibration samples against the logarithm of the respective percent COT102 DNA contents; the slope (a) and the intercept (b) of the calibration curve (y = ax + b) can then be used to calculate the percent COT102 DNA content of the reference samples based on their normalized mean Δ CT values.

3.0 REFERENCES

- Arumuganathan K, Earle ED. 1991. Nuclear DNA content of some important plant species. *Plant Mol Biol Rep* 9:208–218.
- NIST. 2011. *The NIST Reference on Constants, Units, and Uncertainty*. Gaithersburg, MD: National Institute of Standards and Technology. <u>http://physics.nist.gov/cuu</u> (updated June 2, 2011).